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Preface to the 4th edition

In 2020, the first full year of the SARS-COV-2 pandemic, hundreds of 
methods flooded the market to address the urgent demand.  At one point 
in June, for every method that qualified for emergency use authorization 
(EUA), the FDA was disqualifying two methods (adding them to the "do 
not distribute" list). Thus, in a market where a majority of methods were 
of dubious quality, the need and the skills to evaluate the analytical qual-
ity of a test became paramount (again).

 Basic Method Validation is part of a trilogy of “back to basics” 
books that focus on analytical quality management. The other two books 
are Basic QC Practices and Basic Quality Management Systems. When 
I teach these materials, I start with method validation because it intro-
duces the basic concepts of analytical performance and the experimental 
and statistical techniques needed to describe performance in quantitative 
terms. These concepts carry through into the practice of QC and the selec-
tion of optimal QC procedures via quality design and planning.  

The original source of this approach to method validation goes back 
nearly 50 years to a series of papers that were first printed in the Amer-
ican Journal of Medical Technology and later published as a monograph 
titled Method Evaluation. My co-authors were Diane J de Vos, Marian 
R. Hunt, Elsa F. Quam, R. Neill Carey, and Carl C. Garber, all of whom 
worked at the University of Wisconsin. We introduced this approach at 
workshops that were taught at the national ASMT and AACC meetings.  
David Koch, a past president of AACC, continues to teach this workshop 
at the annual AACC conference. This workshop holds the record for the 
longest running workshop in AACC history. 

Statistics don't change much from year to year. It's rare to find new 
analytical approaches that are practical for laboratories to implement. 
What does change much more often are regulations, guidelines, and skill 
patterns. In the 20 years since the first publication of this book, new ap-
proaches have developed.

Over the years, there has been a changing emphasis on method val-
idation and method verification.  Method validation is concerned with the 
question whether performance meets defined quality goals for the intend-
ed medical use.  Method verification focuses on whether the performance 
observed in a laboratory is consistent with the performance claimed by 
the manufacturer.  



Method verification is a less rigorous form of performance assess-
ment.  The experiments require fewer data points, but sometimes more 
complicated data analysis.  The assumption of these studies is that the 
performance claimed by the manufacturer is acceptable for the intended 
medical use, therefore the laboratory only needs to verify the manufac-
turer’s claims.  The verification process is supposed to confirm that the 
method performs “as advertised.”  

Method validation is still required for Laboratory Developed Meth-
ods, known as LDTs. An LDT may be a new method developed for use in 
a single laboratory or it could be an FDA-approved method that has been 
modified by a laboratory.  The act of modifying or creating a new test 
method is classified as "highly complex" and it requires all the studies 
detailed here in method validation, PLUS as many other studies as nec-
essary to prove the analytical and clinical utility of the method. Neverthe-
less, laboratories generally received wide latitude in regulation of these 
tests. These new methods have been seen as crucial for innovation in 
laboratory medicine, and to impose more stringent regulations, such as a 
mandate for FDA approval for every LDT, was viewed as deeply inhibi-
tive. Thus, LDT regulation was a bit of a blind spot in the US.

Into this blind spot came Theranos.

The whole story of Theranos is too complex to discuss here. Suffice it 
to say that Theranos was a fraud, and they weaponized the LDT exclu-
sions in their fraud. By claiming LDT status, they exempted themselves 
from FDA approval requirements of their instrument. Ultimately, their 
fraud was discovered, and the CEO was banned from running a laborato-
ry or serving as an officer in a public corporation. But in the wake of that 
scandal, better regulation of LDTs was given a higher priority.

That is, until 2016. Regulation of medical devices is always a polit-
ical issue, and during times when the regulation of any industry is seen 
as an impediment, the problem of the LDT goes unresolved. And while 
the philosophy of any particular administration may be pro- or anti-reg-
ulation, the issue has been further complicated by a regulatory turf war 
between the FDA and the CDC (as represented by CMS and CLIA). Both 
agencies argue for the regulatory authority over LDTs. Proposals and 
draft legislation has been introduced. But no progress has been made, 
and there is no sign of a resolution on the horizon.

In the meantime, we recommend that laboratories and organizations 
that develop LDTs treat them as highly complex methods, and conduct all 
the validation studies listed in this book.



This 4th edition provides important updates based on these regulato-
ry requirements and emerging standards of practice, particularly the lat-
est guidelines from CLSI (Clinical and Laboratory Standards Institute).

A significant and timely addition to this manual is the discussion 
of qualitative testing validation and verification. For those labs seeking 
to evaluate PCR tests, serology tests, and antigen tests related to SARS-
COV-2, we provide succinct and practical advice.

For more than fifty years, I have worked on quality control and 
method validation. While statistics, equations and calculations may not 
change, the context and the environment are constantly evolving. I hope 
this fourth edition helps you understand these method validation and 
verification numbers in the proper context of your laboratory.

James O. Westgard 
Madison Wisconsin
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There's more online at Westgard Web
In order to squeeze in all the updates, revisions, and entirely new 

chapters into this book, yet still keep it a reasonable length, we had to 
make some cuts. Notably, we had to cut out the glossary and reference 
lists.

But don't worry, you can still view these resources online. Visit 
http://www.westgard.com/bmv/extras.html for access to:

• Frequently-Asked-Questions (FAQs)
• Glossary of terms
• Complete reference list for this book
• Spreadsheets, worksheets and other downloads
• Links to Method Validation calculators, including some exclusive-

ly available to the owners of this book.



Westgard QC, Inc. Copyright © 2020

Table of Contents
1.  Is quality still an issue for laboratory tests? ................................................1

Myths of quality ........................................................................ 3
2.  How do you manage quality? ...........................................................................................13

The need for standard processes and standards of quality... 15
3.  What is the purpose of a method validation study? .......................31

MVV – The inner, hidden, deeper, secret meaning ............... 32
4.  What are the regulatory requirements for basic method 

validation?..................................................................................................................................................41
MVV – The regulations, by Sten Westgard, MS .................... 42

5.  How is a method selected? ...................................................................................................65
MVV – Selecting a method ..................................................... 66

6.  What experiments are necessary to validate or verify method 
performance? .........................................................................................................................................75

MVV – The experimental plan ............................................... 76
7.  How are the experimental data analyzed?...................................................89

MVV – The data analysis tool kit ............................................ 90
8.  How is the reportable range of a method determined? ........101

MVV – The linearity or reportable range experiment ......... 102
Problem set – Cholesterol method validation data .............. 115

9.  How is the imprecision of a method determined? ........................117
MVV – The replication experiment ....................................... 118 
Problem set – Cholesterol method validation data .............. 130

10.  How is the inaccuracy (bias) of a method determined? ....133
MVV – The comparison of method experiments .................. 134 
Problem set – Cholesterol method validation data .............. 156

11.  What’s another way to determine accuracy? .....................159
MVV – How to assess the trueness of a method................... 160

12.  How do you test for specific sources of inaccuracy? .............171
MVV – The interference experiment..................................... 172
Problem set – Cholesterol method validation data .............. 176



Basic Method Validation, 4th Edition

13.  What is the lowest test value that is reliable? .................................179
MVV – The detection limit experiment ................................ 180
Problem set – Cholesterol method validation data .............. 188

14.  How is a reference interval verified?............................................................189
MVV – Reference interval transference ................................ 190

15.  How do you judge the performance of a method? .....................199
MVV – The decision on method performance ....................... 200

16.  What’s a practical plan for validating/ verifying? .....................213
MVV – The real world applications ...................................... 214
MVV – The worksheets .......................................................... 227

17.  How do you validate a qualitative method? .......................................233
MVV – Evaluation of Qualitative Tests ................................ 234

18. How can claims be evaluated on the Sigma scale?.....................251
Translating performance claims into Sigma metrics ........... 252

19. Self-Assessment Answers ..................................................................................................259
Cholesterol Problem Set answers.......................................... 278

The Statistical Appendix .............................................................................................................289

Index  ................................................................................................................................................305
 



Westgard QC, Inc., Copyright © 2020

Page 1

1: Is quality still an issue for laboratory 
tests? 

In this introductory chapter, Dr. Westgard challenges current 
thinking that analytical quality is already better than needed for 
today’s medical care. Using historical maps that were regarded as the 
most authoritative and accurate records of the time, he illustrates 
that popular “truths” can be well documented and widely believed, 
yet entirely wrong. He sets out the need to define requirements for 
quality in order to manage quality in a quantitative manner.

Objectives: 
 Begin thinking about quality in a critical way. 

 Recognize that current beliefs about quality may not be 
grounded in fact. 

 Identify the critical issue for managing quality in a 
quantitative way. 

Lesson materials: 
 Myths of quality, by James O. Westgard, PhD

Things to do: 
 Study the lesson. 

 Find out what quality is needed for a cholesterol test. 
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The Mythical Island of California! 
NOUVEAU MEXIQUE ET CALIFORNIA, by Alain Mallet, 
Paris 1686. A miniature French map showing California as a 
flat-topped island – a myth that persisted from 1620 for over 100 
years. 
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Myths of Quality
A MYTH is a Mistaken Yarn, Theory, or Hypothesis!

James O. Westgard, PhD

Historical Myths of Cartography
Mythical island of California.  Did you know that California 
was an island? It’s well documented on the most reputable maps 
of the 1600s that California was completely surrounded by water. 
For example, see the accompanying map that shows the Isle de 
Californie.  There it is, documented in black and white, proof that 
California was an island. 

 This map of Nouveau Mexique et Californie by Alain Mallet 
was published in 1686 in the Description de l’Univers (Paris). Mallet 
copied the flat-topped model of California that appeared in an ear-
lier map by Sanson, who was one of the most distinguished French 
cartographers (It was very common for mapmakers to copy each 
other’s work). When a new discovery appeared on one map, it was 
widely disseminated on the other maps of the time.  The discovery 
that California was an island was first documented in 1622 and 
persisted on maps as late as 1750, even though evidence in 1705 
clearly established that this was not true.

Mythical island of Friesland. Actually, there is quite a history of 
mythical islands, suggesting that these myths are not as rare as you 
might expect. In the late 1500s, one of the most famous mapmakers, 
Abraham Ortelius, prepared a map of the Northern Atlantic that 
showed an island of Friesland lying a bit west and south of Iceland, 
complete with a detailed description of the coastline, the harbors, the 
people who lived there, what they looked like, and what they did for 
a living. It’s a beautiful map, decorated with sailing ships and sea 
creatures, and was the most authoritative map of the area at that 
time. The only problem was that Friesland didn’t exist. When people 
sailed to the new world and passed Iceland, they ascribed more and 
more details and reality to Friesland because they expected it was 
the next body of land. 
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The mythical island of Friesland!  
SEPTENTRIONALES REGIONES, by Philip Galle, Antwerp, 1595. A miniature 
of Ortelius’ famous map of the north Atlantic region showing the mythical island of 
Friesland (see box) located to the southwest of Iceland. [Emphasis Added] 
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Mythical islands in Lake Superior. Another example that is of 
interest to those of us in the midwest are the islands of Ponchartrain 
and Phillipeaux in Lake Superior. When the border between the 
US and Canada was settled by the Treaty of Paris in 1783, it was 
decided that these islands would be part of the US In the early 1800s 
when Wisconsin was being settled, the US government sent out 
surveyors to map this area more completely, but they couldn’t find 
these islands! They appeared on all the maps of the time, but they 
didn’t show up above the water. It seems that the explorers created 
these islands and named them for the government minister who 
was funding their investigations. They were probably trying to get 
more funding for further explorations and needed some preliminary 
findings to justify more money.  

The mythical islands in Lake Superior! 
LES LACS DU CANADA et NOUVELLE ANGLETERRE, by Robert de 
Vaugondy, Paris, 1749. This map shows Lac Superieur containing the real Isle 
Royale and the mythical islands of Phillipeaux, Pontchartrain, Maurepas, St. Anne.
[ Emphasis added]
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Modern myths of quality
These cartographic myths are amusing in retrospect, but they were 
taken very seriously at the time and created problems later on. 
There are myths today that are also taken seriously and will cause 
us significant difficulty in the future. Some of them hit close to home 
– the quality of healthcare and the quality of laboratory testing.

Myth: QA assures quality in healthcare.  It’s a mistaken 
yarn that puts a good spin on current efforts to measure the quality 
of healthcare. As healthcare providers, we all talk about quality 
assurance (QA), but our quality assurance programs (which are 
often required by regulation and accreditation) primarily deal with 
measuring performance. Quality Assessment would be a better 
name for these efforts. While it is important to assess quality to 
know how well we’re doing, measuring quality doesn’t assure that 
the necessary quality will be achieved. Achieving quality actually 
requires quality design and planning, which starts with defining 
the quality that is needed, then builds that quality into the process.

Myth: Statistical QC controls the quality of laboratory 
tests.  It’s a mistaken theory that the mere use of statistics assures 
that laboratory test results have the necessary quality. Virtually 
all laboratories apply statistical quality control (QC) as part of their 
efforts to assure the quality of laboratory tests. While we may not 
understand the theory or the statistics, we still seem to believe that 
something magical happens because of those statistics. We act as if 
analyzing controls and plotting results on control charts will assure 
the quality of our testing processes, even if we don’t understand any 
of the numbers.

Myth: Quality can be managed even if the required quality 
isn’t known. It’s a mistaken hypothesis that quality can be managed 
even if we don’t know the quality that is needed. Few laboratories 
have defined the analytical quality that is needed for the tests they 
perform. How is it possible to know we are achieving an unknown? 
Can you manage the finances of the laboratory without knowing the 
budget? Don’t you need to know the quality required for a laboratory 
test if you are to manage the quality of the testing process? 
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Myth: Quality requirements need to consider only impre-
cision and inaccuracy. This problem with quality requirements 
gets to be even more complicated. Current thinking about quality 
goals and requirements is flawed because it considers only the stable 
method performance characteristics (imprecision and inaccuracy). 
If performance is always stable, why bother doing quality control at 
all? If QC is necessary, don’t we have to consider the performance 
characteristics of QC procedures (probabilities for error detection 
and false rejection) in our goal-setting models?

 Myth: Current laboratory methods have better impre-
cision and inaccuracy than needed. The net effect of all these 
myths is the belief that the performance of current laboratory methods 
is better than required for medical needs. This belief is based on a 
mistaken theory for setting quality goals, a mistaken hypothesis in 
equating all medically tolerable variation with analytical variation, 
disregarding the subject’s own biological variation, and the mistaken 
assumption that QC procedures have ideal response curves and can 
detect any change in performance, regardless how small.

Myth: Analytical quality is a given today. As a consequence 
of these myths, there is a common feeling today that analytical quality 
is a given, i.e., analytical quality itself is being assumed today. In 
the midst of programs on Six Sigma, Lean, Risk Management, and 
Total Quality Management (TQM), it is often mistakenly assumed 
that the problems in technical quality management have already 
been solved. This represents the mistaken hypothesis that past 
efforts have resolved any technical difficulties, so now we can get 
on to new issues that are in vogue, such as monitoring customer 
satisfaction, measuring patient outcomes, etc.

Myth: No further improvements in analytical quality are 
needed. The collective result of all these myths is a false sense of 
security regarding the quality of laboratory testing processes. Many 
think analytical quality is so good that there is no need for further 
improvement. This is the most serious myth of all because it makes 
us complacent about what we are doing and hinders efforts to further 
improve the analytical quality of laboratory tests. 
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Myth: The government regulates laboratory tests to make 
sure quality is acceptable.  While it is true that the Food and 
Drug Administration (FDA) does approve new tests and analytic 
systems, it is important to understand that this clearance is based 
only on “truth in labeling.”  Manufacturers are required to make 
claims for certain performance characteristics, such as reportable 
range, precision, accuracy, interference, detection limit, and refer-
ence range and to submit data to support those claims.  The FDA’s 
process focuses on whether or not the data supports the manufac-
turers’ claims, not whether or not the quality of the testing process 
is acceptable for patient care.  We may believe that manufacturers 
would not submit a new test for FDA clearance unless the quality 
was acceptable, but that assumption is not always true.

Myth: Laboratories today should focus and pre-analytic 
and post-analytic errors since analytic errors are no longer a 
problem.  This idea surfaced in 1990 from the CDC in an effort to 
broaden the quality assessment efforts in clinical laboratories.  Later 
in the 90s, CMS adopted that perspective in revising the CLIA Final 
Rules to include quality management of the “total testing process,” 
i.e., pre-analytic, analytic, and post-analytic parts of the testing 
methodology.  By the second decade of the 21st century, this belief 
became “common wisdom” in the laboratory community. Today that 
belief  today is used (and accepted) as an argument for reducing the 
amount of statistical QC performed during the analytic phase.  It 
satisfies our yearning to do less QC, to simplify laboratory testing, and 
to reduce costs and eliminate trouble-shooting and repeat analyses, 
all of which allow laboratory tests to be performed in testing sites 
where technical skills and laboratory experience may be lacking.

Where’s the evidence?
Theranos is the latest example of how everything that can go wrong 
will go wrong in medical diagnostics and analytical testing.

In what is now known to be a fraud, the corporate leaders of 
Theranos claimed they had a diagnostic instrument that could run 
more tests, faster, cheaper, and easier than traditional core labo-
ratory instruments. In reality, they had instruments that barely 
functioned, and they modified existing analyzers to perform tests 
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on specimens that were highly diluted. The gulf between the claims 
of performance and the actual performance were so wide, the com-
pany became a subject of a series of Wall Street Journal articles, a 
best-selling book, Bad Blood, a podcast, multiple documentaries, and 
a rumored feature film (still to come). Theranos went from being a 
Silicon Valley darling, a “unicorn” valued at $9 Billion(!) dollars, to 
going broke. The CEO, Elizabeth Holmes, went from having a per-
sonal net worth of $4.5 billion dollars, to being so broke she couldn’t 
pay her own attorneys in one of the many lawsuits.

The fact that Theranos was able to fool investors, regulators, 
and patients for 10 years further proves the lack of robust standards 
and practices for quality management in medical laboratories.  As 
Theranos’s quality problems became evident, they belatedly tried 
to create a veneer of quality by adding a scientific board of advisors, 
which included past officers of the American Association for Clini-
cal Chemistry, AACC. But adding a set of polished resumes didn’t 
improve the central engineering failures. It was too late for that. 

In this age of Evidence-Based laboratory medicine, where’s the 
data to support these beliefs that we no longer need to worry about 
analytical quality?  Consider one last myth – laboratories should 
focus and pre-analytic and post-analytic phases of the total testing 
process – because it rests on the other beliefs.   

First, let’s examine a more complete model for the total test-
ing process, as provided by Goldschmidt et al[2] and shown in the 
accompanying figure. Called a “filter model,” the figure illustrates a 
series of filters through which a laboratory test request, specimen, 
and sample must pass.  In reality, these are mathematical filters, 
rather than physical filters as suggested in the figure, but as labo-
ratory scientists rather than mathematicians, the approach is easy 
to understand from the illustration.  This more detailed model 
describes 5 phases or filters for validating the total testing process.

• Administrative validation refers to steps beginning with the 
selection and ordering of the right test, collection of the right 
information to understand the context of the test, as well as 
validation of right patient conditions, right preparation, etc.
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• Sample validation is concerned with obtaining the right 
specimen at the right time on the right patient, the right 
processing and transportation of the sample, and the right 
use of that sample for analytical measurements;

• Technical validation has to do with getting the right 
answer, which requires knowing the quality required for a 
test, validating the precision and accuracy of measurement 
process, designing the right QC procedure, and implementing 
the measurement and control procedures properly;

• Patient validation requires that right test result be correctly 
reported to the right patient record and considers whether that 
test result is consistent with knowledge about the patient, other 
test results on that patient, within the expected variation of 
the individual patient and the appropriate population group, as 
well as relationship to critical or alert values, and consistency 
with patient populations;
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• Clinical validation is concerned with the patient receiving 
the right clinical treatment based on the laboratory test results 
and services. Clinical validation goes beyond what is normally 
considered to the validation of test results in the US.  

This is a European model and demonstrates that patient and 
clinical validation have long been a critical part of the validation 
of laboratory tests. Patient and clinical validation are important 
professional responsibilities of MD and PhD level laboratory phy-
sicians and scientists. With increasing workload, they have devel-
oped computerized tools and programs to standardize and facilitate 
this “medical review” or “medical QC.”  The importance of the first 
step (administrative validation) becomes clear in the context of the 
information needed to complete this medical review and control.

Next, let’s consider the most definitive study on the sources 
of laboratory errors [3].  Drs. Plebani and colleagues have studied 
laboratory errors for decades and are recognized as leaders in per-
forming such studies. Their results document the distribution of 
errors shown in figure. Clearly there are more pre-analytic errors 
(60%) than post-analytic errors (25%) than analytic errors (15%).  
Many clinical laboratory scientists cite these figures to support the 
idea that pre-analytic and post-analytic errors are more important 
than analytic errors and often conclude that analytic quality is no 
longer an issue.

However, a more detailed reading of the study shows that from 
the total of 51,746 tests, there were 393 questionable results, 160 of 
which were confirmed as laboratory errors. Of these 160 errors, 46 
caused inappropriate patient care, and 24 of those cases of inappro-
priate patient care were caused by analytical errors.  That means 
that over half the cases (52%) of inappropriate patient care 
are due to analytical errors. Analytical errors are still the largest 
and most important source of errors that cause harm to patients!

We need to recognize that the core competency of a laboratory 
must be producing the correct test result.  All sources of error in 
the testing process must be carefully managed and monitored, but 
it starts with analytical errors.  If we can’t, don’t, or won’t assure 
analytical quality of our test results, then we should not be in the 
business of providing laboratory testing services.
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What’s the point? 
You need to think critically about quality and recognize that many 
of our current beliefs are not based on scientific evidence.  These 
myths need to be exposed if the technical management of analytical 
testing processes is to be improved.

That’s the purpose of this introduction! You need to assess 
many of the quality management practices that are accepted in 
laboratories. To begin, you need to understand how quality require-
ments can be defined, how method performance should be measured 
experimentally, how the experimental data can be analyzed with 
statistics to estimate analytical performance characteristics, and 
how a decision on the acceptability can be made. 

Once the performance of a method has been judged to be ac-
ceptable (Basic Method Validation), you need to select a statistical 
QC procedure that can detect medically important errors (Basic 
Quality Management Systems), make routine measurements on 
the necessary number of controls, and interpret the control results 
using the appropriate decision criteria or control rules (Basic QC 
Practices).

References
1. Carreyou, Bad Blood: Secrets and Lies in a Silicon Valley Startup. Knopf 

(New York, NY) 2018.

1. Oosterhuis WP, Ulenkate HJLM, Goldschmidt HMJ. Evaluation of 
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Self-Assessment Questions:
 What myths of quality exist in laboratories today? 

 What can be done to improve laboratory quality management 
practices? 
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3: What is the purpose of a method 
validation or verification study? 

Dr. Westgard reveals the inner, hidden, deeper, secret meaning of 
method validation and verification. Knowledge of this “meaning” 
should make the method validation/verification process more rational 
and understandable.

Objectives: 
 Understand what method validation and verification studies 

are supposed to study. 

 Recognize the potential shortcoming of statistics in a method 
validation or verification study. 

 Identify the different types of analytical errors that need to 
be assessed.

Lesson materials: 
 MVV – The inner, hidden, deeper, secret meaning, 

 by James O. Westgard, PhD

Things to do: 
 Study the lesson.

 Review a method validation or verification report from the 
scientific literature.
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Method Validation and Verification:  
The Inner, Hidden, Deeper, Secret Meaning
James O. Westgard, PhD

When I was a freshman in college (this was quite a while ago, before 
computers but after quills), I had an English professor who taught 
me something I’ve never forgotten. He always asked, “What’s the 
inner, hidden, deeper, secret meaning in what you’re writing?” In 
other words, what are you really trying to accomplish? You’d better 
figure it out if you expect someone else to understand it. Sure, you 
can write down a string of words, but you’ve really got to be clear 
on what you want to accomplish, otherwise the true meaning will 
remain a secret.

The real surprise came on my first job as a clinical chemist 
when I began evaluating the performance of a new multichannel 
chemistry analyzer. I studied all the existing scientific literature 
that provided guidelines for performing method validation studies, 
but it wasn’t at all clear how to tell whether or not a new method 
was acceptable. No one was telling the secret! And that secret is of 
paramount importance to evaluate a method properly. Sure, you can 
collect some data, calculate some statistics, and provide some paper 
in a folder (or files in an electronic folder) to show a lab inspector, 
but is that really why you’re doing this?

While I won’t claim my English professor made me a better 
writer (nor can you blame him), he did make me a better scientist 
by helping me search for the deeper meaning and real purpose in 
what I do. What’s the real purpose of method validation? What’s the 
problem we’re trying to solve? Does the present practice provide a 
correct solution? Is there a better way to do this? How do you know 
what’s the right way to validate the performance of a method?

The Secret Revealed
Here’s the inner, hidden, deeper, secret meaning of method validation 
– and you don’t have to read any further to get the message – ERROR 
ASSESSMENT. You want to estimate how much error might be 
present in a test result produced by a method in your laboratory. With 
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this information, you then want to be sure that amount of error won’t 
affect the interpretation of the test result and compromise patient 
care. If your observed errors are so large they can cause an incorrect 
interpretation, the method isn’t acceptable. To be acceptable, the 
observed errors need to be small relative to changes that will cause 
a change in the interpretation of a test result.

A focus on analytical errors is the key to the whole method 
validation process. What kinds of analytical errors might occur with 
a laboratory method? What experiments can provide data about 
those errors? What’s the best way to perform those experiments to 
assess the errors? How much data needs to be collected to obtain good 
estimates of errors? What statistics best estimate the size of those 
errors from the experimental data? What size errors are allowable 
without affecting the interpretation of a test and compromising 
patient care?

Method Validation is about error assessment – that’s 
the secret!

[By the way, here’s the inner, hidden, deeper secret meaning 
of Method Verification: Did you get what you paid for? Does it live 
up to the label? Does performance match the claim?]

A Quick Proof
The correlation coefficient is a statistic that is almost always 
calculated and reported to describe the results from a comparison of 
methods study. A value of 1.000 indicates perfect correlation between 
the results of two methods. Other statistics (such as slope, intercept, 
and standard deviation of the residuals) can also be calculated from 
the same data to estimate the size of errors occurring between the 
methods. Which are more useful?

Consider the following situation. Here’s a new cholesterol 
method where the results from a comparison of methods study give 
a correlation coefficient of 0.999, which is very close to ideal value 
of 1.000. Sounds pretty good, doesn’t it? How close are the results 
between the two methods? Is the new method acceptable? Let me 
give you some additional information.
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Here’s the plot of 
the test results by the 
new method vs those 
from the comparative 
method. Note first that 
the correlation coefficient 
shows that the results are 
close to the best line of fit 
between the methods; it 
does not show that the 
test values are the same 
as the comparative val-
ues.   

Results of a comparison study, where the 
new or “test” method values are plotted on 

y-axis and comparison values on x-axis.

The plot shows that almost all the new method values are 
systematically higher by 15 mg/dL. Does this information that there 
is a systematic error of 15 mg/dL help with your decision on the 
acceptability of the new method? It doesn’t look so good anymore, 
does it? Being in error by 15 mg/dL may limit the usefulness of the 
test results produced by the new method.

As laboratory professionals, we intuitively understand errors 
and have a sense of how they might affect the interpretation of test 
results and the related care of patients. We don’t have the same sense 
about statistics! That’s why statistics should be used to estimate 
the errors that are meaningful to us[1] – that’s a second important 
secret and we’ll deal with it in detail later. 

From this simple example, you can recognize the difficulty in 
interpreting a correlation coefficient, since it doesn’t provide a useful 
estimate of analytical errors. Information about the size of analytical 
errors is more useful for judging the performance of a method[2]. The 
fact that the correlation coefficient is commonly calculated doesn’t 
make it useful. It just shows that people don’t know the secret of 
method validation!
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Analytical Errors
Let’s focus on analytical errors and make sure we have a common 
understanding of the different kinds of errors that need to be 
estimated. Here’s a list of terms you need to understand: random 
error (imprecision), systematic error (inaccuracy), constant error, 
proportional error, and total error. 

Random Error (RE) or Imprecision, as 
shown by the distribution of test values.  

Random error, RE,  
or imprecision

 Random error is described 
as an error that can be 
either positive or negative, 
whose direction and exact 
magnitude  cannot  be 
predicted, as shown in the 
accompanying figure by 
the distribution of results 
for replicate measurements 
made on a single specimen.

 Imprecision is usually 
quantitated by calculating 
the standard deviation (SD) 
from the results of a set of 
replicate measurements. 

The SD increases as the concentration increases, therefore it is 
often useful to calculate the coefficient of variation (CV) to express the 
SD as a percentage of the mean concentration from the replication 
study. The maximum size of a random error is commonly expressed 
as a 2 SD or 3 SD estimate to help understand the potential size of 
the error that might occur.   
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Systematic error, SE, or 
inaccuracy

A systematic error is an 
error that is always in one 
direction, as shown in the 
accompanying figure where a 
systematic shift displaces the 
mean of the distribution from 
its original value. In contrast 
to random errors that may be 
either negative or positive 
and whose direction cannot be 
predicted, systematic errors 
are in one direction and cause 
all the test results to be either 
high or low.   

Systematic Error (SE) or Inaccuracy, as 
shown by shift or bias between mean value 
and correct value. 

How high or how low can be described by the bias, which 
is calculated as the average difference, or the difference between 
averages of the values by the “test” method and a “comparative” 
method in a comparison of methods experiment. Alternatively, the 
expected systematic difference may be predicted from the equation 
of the line that best fits the graphical display of test method values 
on the y-axis vs comparative method values on the x-axis. SE may 
stay the same over a range of concentrations, in which case it can 
also be called constant error, or it may change as concentration 
changes, in which case it can be called proportional error. 
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Total Error, TE

Total error is the net or 
combined effect of random and 
systematic errors, as shown 
in the accompanying figure. 
It represents a “worst-case” 
situation, or just how far wrong 
a test result might be due to 
both random and systematic 
errors. Because laboratories 
typically only make a single 
measurement for each test, 
that measurement can be in 
error by the expected SE, or 
bias, plus 2 or 3 SD, depending 
on how you estimate the effect 
of RE.   

Total Error (TE), includes both 
systematic error (SE) and random error 
(RE). 

Why do we combine the errors? While we in the laboratory like 
to think about imprecision and inaccuracy as separate errors, the 
physician and the patient experience the total effect of the two, or 
the total error. Total error provides a customer or consumer-oriented 
measure of test performance, which makes it the most important 
parameter for judging the acceptability of analytical errors.

[Note: “total error” here means total analytical error, it is not 
the total of analytical, pre-analytical, and post-analytical error. 
Some seek this total total error, but it remains nearly impossible 
to formulate this sum.]

Trends and Directions
Efforts to provide worldwide standards of laboratory practice are 
changing the terms and concepts we use.  ISO, the International 
Standards Organization, provides specific guidelines for healthcare 
laboratories in its document 15189 – Medical Laboratories – 
Particular requirements for quality and competence [3].   To 
give you a flavor of the ISO approach, let’s see what it recommends:
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“When describing the performance of procedures and the reliability 
of their results, ISO terminology should be used. Results should be 
universally comparable and this requires metrological traceability, 
the concomitant uncertainty indicating reliability should be 
obtained in a universal and transparent fashion, and should be 
combinable.” [4]

The preferred ISO concepts and terminology are “trueness” 
and “uncertainty.” Trueness is used to describe the “closeness of 
agreement between the mean obtained from a large serious of mea-
surements and a true value.”  This is equivalent to the terms bias 
and systematic error in this chapter. Uncertainty of measurement 
is used by ISO to describe a “parameter, associated with the result 
of a measurement that characterizes the dispersion of the values 
that could reasonably be attributed to the measurand,” where 
measurand refers to the particular analyte or test.  Uncertainty 
describes a range of values that correspond to a given test result, 
e.g., a test result of 200 may have a “standard uncertainty” (SD, 
CV) of 4 units or 2%, indicating that a value of 200 represents an 
“expanded uncertainty” of 192 to 208 units (95% or 2SD confidence 
interval). This concept sounds and looks similar to precision, but the 
estimate of uncertainty may also incorporate components in addition 
to the random error of the method, e.g., the uncertainty associated 
with calibrators, uncertainty in the estimate of any bias, etc.  There 
are ongoing discussions about the relevance of the concepts of Total 
Analytical Error vs Measurement Uncertainty, but for now the error 
concepts provide more practical tools for applications in the medical 
laboratory [5]. 

These concepts of trueness and uncertainty come from the 
world of metrology, where customers are provided with products 
having assigned target values along with the uncertainty that 
expresses the correctness or “doubt” in the target value.  The ISO 
approach expects customers to know the meaning of uncertainty. 
In general, they don’t. The world of laboratory medicine is differ-
ent. Physician customers and patient consumers are not aware of 
the science of measurements and the uncertainty in test results. It 
would be better if laboratories managed their analytical methods to 
verify the attainment of the intended clinical quality of results, but 
in the absence of doing so, it will become necessary to inform the 



Westgard QC, Inc., Copyright © 2020

Page 39

customer of the actual “doubt” of the reported results. Measurement 
uncertainty may be part of your future.

What’s the point?
You must understand the “why” of method validation in order to 
understand “how” method validation should be accomplished!  The 
“why” defines the purpose, which is to determine the amount of error 
that might occur with a method. The “how” defines the experimental 
protocols and data-analysis procedures that provide estimates of the 
errors.  Method validation is all about errors!

Laboratory regulations in the US require that method perfor-
mance for any new method be “verified” prior to reporting patient 
test results. Under the CLIA Final Rule, laboratories must 
verify the reportable range, precision, accuracy, and refer-
ence intervals for all non-waived methods implemented. For 
methods that are developed in-house or modified by the laboratory, 
the additional characteristics of analytical sensitivity (detection 
limit) and analytical specificity (interference, recovery) must also be 
verified. More extensive reference range studies are also appropriate. 

The responsibility for method verification or validation resides 
with the laboratory. While manufacturers will often run studies and 
collect data during the installation of new analytical systems, the 
laboratory is still accountable to see that adequate data have been 
collected and that these data show that the new methods provide 
acceptable performance in the laboratory.
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Self-Assessment Questions:
 What are the two major types of analytical errors?

 What is meant by “total error”?

 How is total error related to the basic types of errors?

 How does your literature report describe the errors of the 
method?

 What statistics are used in the literature report?

 How do the report’s conclusions relate to the errors of the 
method?
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7: How are the experimental data 
analyzed? 

Before explaining the details of specific experiments, Dr. Westgard 
gives an overview of the data analyses that are useful and appropriate 
for the different studies. The approach here is to consider data analysis 
“tools,” rather than statistics and equations. These tools are readily 
available in the form of calculators, electronic spreadsheets, and 
computer programs. Online calculators are introduced to provide 
easy-to-use tools for use with this book.

Objectives: 
 Minimize your fear of statistics. 

 Identify the tools and techniques needed for data analysis. 

 Match the tools with the experiments and errors to be 
estimated.

 Recognize the capability of available calculation tools.

Lesson materials: 
 MVV – The data analysis tool kit, by James O. Westgard, PhD

 The method validation data analysis tool kit, 
http://www.westgard.com/mvtools.html

Things to do: 
 Study the lesson.

 Practice using the online calculators with the sample data.

 Review the statistics presented in a published validation report.
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Method Validation and Verification:  
The Data Analysis Tool Kit
James O. Westgard, PhD

This chapter is actually about statistics, but I didn’t put “statistics” 
in the title because too many people get turned off as soon as they 
see that word. Others become uncomfortable when they see the 
equations for the calculations. By now – three sentences into this 
chapter – you may be wondering if you can just skip the chapter 
and avoid the topic. The answer is NO. You need statistics to make 
sense of the data collected in method validation experiments.  

Tools, not equations!
To reduce the mental roadblocks in understanding statistics, there 
aren’t any equations in this chapter! Instead, we’re going to 
assume the calculations can be easily performed with the informatics 
available today. Your main job will be to recognize what calculations 
are useful for different sets of data.  

When I lecture on this topic, I begin by showing the class a 
bunch of tools, such as a hammer, wrench, saw, and screwdriver.  
Office tools (such as a stapler, scissors, paper, and pen) would also 
provide good examples, but you’re too comfortable with those tools. 
I want you to learn that you can use tools, even if you’re not so 
comfortable with them. So, let’s consider the hammer, wrench, saw, 
and screwdriver.

• Which tool would be most useful for hanging a picture on the 
wall?  

• Which tool would you use to tighten the bows on your 
sunglasses?  

• Which tool do you want to take along at Christmas time when 
you go into the forest to get your tree?  

• Which tool do you hope to have along if your car has a flat tire?
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You don’t have to be an engineer, mechanic, or carpenter to 
recognize which tool fits these jobs. Everyone makes use of these 
tools to do certain basic jobs. While there are more complicated 
applications that take more skill and knowledge – and sometimes 
more specialized tools – everyone is capable to making practical use 
of the common tools. 

Another key takeaway is to recognize that all tools have lim-
itations.  You wouldn’t try to inflate a tire with a hammer because 
it’s the wrong tool for the job.  Knowing the limitations of a tool is 
also key to effective use.

It’s the same with statistics!  

Recommended tools for data analysis
Statistics are just tools for evaluating experimental results, i.e., data, 
and summarizing all that data in just a few numbers that provide 
information about the data.  Remember that the objective of each 
experiment is to estimate the amount of error from the data collected. 
The key with the statistics is to know which ones will provide useful 
information about the errors of interest in the different experiments.

First, we want to know the imprecision or random error from 
the 20 or more data points collected in a replication experiment. Then 
we need to define the usable analytical range (or reportable range) 
of the method so that the experiments can be properly planned and 
valid data can be collected. The reportable range is usually defined 
as the range where the analytical response of the method is linear 
with respect to the concentration of the analyte being measured. 
Finally, we need to make a judgment on the performance of the 
method on the basis of the errors that have been observed. The 
statistics are used to make reliable estimates of the errors from the 
data that have been collected.
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Here’s a picture of the tool kit you need to analyze the data 
from basic method validation experiments. The tool kit includes 
several calculators and plotters:

• Linear-data plotter to display the observed method 
response versus the relative or assigned concentrations for 
a series of solutions or specimens; 

• SD calculator to determine distribution statistics (mean, SD, 
CV) and to display a histogram of the distribution;

• Paired-data calculator to determine regression statistics (slope 
or a, y-intercept or b, standard deviation about the regression 
line or sy/x, and correlation coefficient, r), display the data in 
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17: How do you validate or verify a 
qualitative method?

For tests that aren’t entirely quantitative, validation and verification 
is not as well described. There are fewer guidelines and little in the 
way of published examples. This chapter reviews how to approach 
validation and verification for a qualitative or semi-quantitative 
method. In the age of COVID19, these techniques are especially 
relevant. 

Objectives: 
 Express precision as the uncertainty at the cutoff.

 Express accuracy as clinical agreement with a gold standard 
or comparative method

 Calculate Percent Positive Agreement (PPA) and Percent 
Negative Agreement (PNA) 

 Understand the impact of Prevalence with Positive Predictive 
Value (PPV) and Negative Predictive Value (PNV)

Lesson materials: 
 MVV – Evaluation of Qualitative Tests 

by James O. Westgard, PhD

 Westgard 2x2 Contingency Calculator

 Westgard 2 Test Comparator Tool 

Things to do: 
 Study the materials.
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Method Validation and Verification:  
Evaluation of Qualitative Tests
James O. Westgard, PhD, Patricia E Garrett, PhD, Sten Westgard MS

As we were preparing this 4th edition, the COVID-19 pandemic 
hit and the need for validation of qualitative tests became a high 
priority.  Under the conditions of Emergency Use Authorization 
(EUA), the FDA registered many new tests without requiring the 
extensive documentation of performance required for the 510k 
approval process.  Laboratories approved by CLIA for performing 
moderate and high complexity tests were eligible to implement 
manufacturers’ EUA tests, but were still required to perform some 
minimal validation studies, plus analyze positive and negative QC 
samples with each analytical run of patient samples. The FDA also 
required that laboratories confirm the first 5 positive and first 5 
negative patient results by comparison with a previously approved 
EUA method.  CLIA was slow to issue any specific guidance for 
laboratories, thus the main sources of guidance were from the FDA 
[1] and from the CLSI EP12-A2 [2] document that provides general 
guidance for evaluating the performance of qualitative tests.  

In this book, our applications and discussions have focused on 
quantitative methods that have a continuous measurement scale, 
i.e., a cholesterol test can have a result that is any number from 0 to 
say 400.  The key test performance characteristics are precision and 
accuracy. Precision is related to random error and typically expressed 
as a standard deviation (SD).  Accuracy is related to systematic error 
and is described by trueness (bias) and Total Analytical Error (both 
random and systematic errors).  

Qualitative tests provide binary results, yes/no answers, or 
positive/negative results.  A pregnancy test is a good example of a 
binary output.  The result is the patient is pregnant, or not, with no 
possibility of being just a little bit pregnant. Blood bank screening 
tests also provide positive/negative results, but often use a cutoff 
to convert an internal continuous response to a binary result.  The 
existence of an internal continuous response means there are some 
possibilities to apply some of the experiments used for quantitative 
test methods, thus for Enzyme Linked ImmunoSorbent Assays (ELI-
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Lipemia  174
Pipetting performance  174
Purpose  172
Replicates  173
Summary comments  176
Volume of interferer addition  174

intermediate precision conditions  119
interpretation of test results  34
ISO  38, 57–64, 203
ISO 15189  38, 128

J
Joint Commission  41, 42
judgement of acceptability  76
judgment  258

L
Laboratory-Developed Test (LDT)  42,  59-64,  

84,  106,  111,  121, 136, 160
laboratory services  17
laboratory testing  6, 7
Lean  7
least squares analysis  139, 144,  302
Limit of Blank (LoB)
definition	 	 181

Limit of Detection (LoD)
definition	 	 48,		181-182

Limit	of	Quantification	(LoQ)
definition	 	 180-182

linear-data plotter  92, 94
Linearity Study  46, 47,  102, 142, 215, 221
 number of levels  106
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 see also reportable range study
linear range  106
linear regression analysis  139,  288, 300
linear regression statistics  95, 142, 216
lipemia  82, 171-172, 213
lower limit of detection  178
Lower	limit	of	quantification
definition	 	 179

Lower	Limit	of	Verification	 	 153
Lucky Eddy  18
lyophilization  120

M
manufacturer claims  76, 193, 214,  250, 

254-255
manufacturer directions  48, 71
manufacturer’s	reference	range	 	 212
matrix  95, 119, 120, 160,  215
maximum allowable bias  22, 256
maximum allowable CV  256
maximum imprecision  22
mean  36, 95, 121, 191, 215, 289, 292, 2

94, 296, 302
	 definition	 	 289
measurement uncertainty  39, 128
medical decision levels  82,  121, 139, 142, 

200,  215-216, 254
medically allowable error  198
medically allowable standard deviations 

(SD)  18
medically important changes  21
medically important errors  11, 21
medical usefulness  67, 94
method acceptability  , 96, 141, 297, 300
method characteristics  67, 213
method decision  80
method decision calculator  205
Method Decision Chart (MEDx)  93, 94, 123, 

 141-142, 154, 200, 214, 216, 
218, 250

example applications  203
excellent performance  202
good performance  202
how to construct  200
how to use  202
marginal performance  202
poor performance  202
unacceptable performance  202

world class performance  202
method implementation  83
methodology characteristics  68-71, 76, 217
method performance  7, 11, 18, 67, 

 76, 78, 83, 97, 120, 198,  212, 214
method selection  66
method stability  102
method validation  32, 33, 66, 76, 119

applications with published data  214
method validation Regulations  42
method validation study  83
method	verification	 	 48
metrology  39
Milan Consensus  21, 201
minimum detection limit  178
moderate complexity tests  42, 81, 170
Modern myths of quality  6
multitest systems  71
Myths of Quality  3–12

N
NCEP (National Cholesterol Education Pro-

gram)  121
NEQAS   162
Nevalainen  251, 252, 253
New York  42
nonparametric statistics  290
non-waived methods  42, 44, 46, 50, 52, 212
normal curve  290
null hypothesis  293, 296, 298
numbers of control measurements  218

O
observed error  33, 94
observed imprecision  97
observed inaccuracy  97
operating point  97, 141, 202, 216
operating	specifications	 	 20,	 21
outliers  96, 142

P
paired data calculator  92, 95
paired t-test  288, 294
parametric statistics  288, 290
Passing-Bablok regression  96,  144,  146
patient pools  105, 120, 171
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patient specimens  122, 136, 142, 
 173, , 217, 218, 257

patient validation  10
Pearson product moment  95
performance  34, 67, 68
performance characteristics  68-70, 76, 219
pH  299
pipetting performance  174
Plebani study of laboratory errors  9
plotting  6
point-of-care devices  68, 70
points of care on method comparisons  148
population of interest  290
post-analytic errors  8, 10, 43
pre-analytic errors  8, 10, 22, 43
precision  9, 46, 48,  52, , 

54  68, 71, 76, 80, 174,  214, 257
definition	 	 119
see also imprecision

preventive maintenance  49, 67, 83, 219
probability (p)  298
procedure,	definition	 	 43
process,	definition	 	 43
proficiency	testing	 	 20,	49,	 72
 criteria  22, 141, 176, 201
 testing samples  143
proportional error  35, 36, 77, 217
proportional systematic error  77, 78, 95, 

 215, 218

Q
Quality Assessment (QA)  6, 17
Quality Control (QC)  7, 11, 17, 66
 procedures  18, 67, 80
Quality Improvement (QI)  17
Quality Laboratory Processes (QLP)  16, 17
Quality Planning (QP)  17, 18
Q-Probe  254
Qualitative Method Validation  233

2x2 Contingency Calculator  243
Accuracy  247
Accuracy as Agreement with Clinical Classi-

fication	 	 239
Analytical sensitivity  247
Calculation	of	95%	Confidence	Limits	 	 249
Calculation of Performance characteris-

tics  241
Calculation of Predictive Values  250

Clinical Agreement Study  239
clinical sensitivity  239
clinical	specificity	 	 239
Clinical Usefulness of Test Results  243
Comparative analytical method or clinical 

classification	 	 240
Control materials  238
COVID-19  234
Criteria for Acceptable Performance  243
Data Summary by 2x2 Contingency Ta-

ble  241
Emergency Use Authorization (EUA)  234
EP12  238
Example Calculations  242
False Negative, FN  241
False Positives, FP  241
“hit rate”  237
Imprecision	curve	and	cutoff	interval	 	 235
Interpretation of “hit rates”  238
Laboratory-Developed Tests (LTDs)  239
Limit of Detection (LoD)  236
Nucleic	acid	amplification	tests	

(NAAT)  236
Number of Comparative Results  240
percent negative agreement (PNA)  239
Percent Negative Agreement (PNA)  241
Percent Overall Agreement (POA)  241
percent positive agreement (PPA)  241
Percent Positive Agreement (PPA)  241
Precision as the Uncertainty Interval about 

the	Cutoff	 	 235
Prevalence  244
Strategy	to	confirm	positives	 	 245
True Negatives, TN  241
True Positives, TP  241
Two Test Comparator Calculator  246

Quality  3, 6, 7, 15
quality assessment  6,  17, 43, 44
quality control  17, 21, 47, 67
Quality Control  83
quality improvement  17
quality management  8, 11, 15-17
quality planning  6, 17, 18
 model, analytical  22
 model, clinical  22
quality requirement  6, 20-

21, 76, 200, 217, 256, 258
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analytical  200
quality standard  17-18, 20, 22
 getting started  20
 a short history  18
 convenient sources  22
 heirarchy  19
 trends and directions  24

R
Random error (RE)  35-37, 77, 78, 79,  93-

95, 118, 119, 121, 140, 142, 173,  
200, 202, 214, 215, 218, 298, 299
, 300, 302

reagent lot  70, 102,  217, 219
real world application of method valida-

tion  214
recommended tools for data analysis  91
Recovery Experiment  47, 68, 81-82, 161-

170, 176, 215, 217-218, 221, 293-295
Commutable samples  164
Concentration of analyte added  166
Concentration of standard solution  167
Correcting for baseline  166
Evaluating Bias  167
Fresh patient samples  164
matrix	effects	 	 162
Number of concentrations tested  165
Number of replicate measurements per 

sample  165
Pipetting accuracy  166
Samples  161
Samples	with	method-specific	expected	

values  164
Surrogate samples: factors to consider  165
Validation Criterion for Acceptable Perfor-

mance  169
Verification	Criterion	for	Acceptable	Perfor-

mance  168
Volume of standard added  166

Reference Interval Study   
18, 46, 52, 71, 80, 194-195, 214

 demographics  192
 establishment  191
 limits  193-194
 transference  190-191, 216

approaches to consider  191
background  190
calculation from comparative method  194

divine judgment  192
estimation with 60 samples  193
purpose  190
verification	80
verification	by	20	samples	 	 194
verification	with	20	samples	 	 192
what to do  195

reference materials  48, 143
reference method  48, 135
reference range  48,  56
regression equation  195, 256, 303-304
regression line  106
regression statistics 

  92, 194-195, 202, 218, 222, 304
Regulations  42–64
relative bias  160
reliability  38
repeatability  118-119
replicate measurements  35, 108, 173, 217
Replication Experiment  46-48, 52, 55, 

68, 71, 79, 80-82, 91,  93-94, 102, 
113, 118, 120, 140, 202, 214-
215, 217, 221, 256, 302

concentrations to be tested  121
criteria for acceptable performance  122
data calculations  121

				definition	 	 104
matrix of sample  120
matrix of samples  119
number of materials  121
number of test samples  121
time period  119
verification	of	manufacturer’s	claim	 	 123

    worksheet  220
Reportable Range Experiment  102, 215, 221
reportable range worksheet  219
“Ricos goals”  23, 203
routine performance  80, 83
routine service and operation  67

S
Samples	with	method-specific	expected	

values  106
Sample validation  9
scatter plot  142
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 see also comparison plot
SD calculator  92, 94
Systematic Error (SE)  35-37, 77, 92-

93, 139, 141-142, 172, 200, 202, 
214-215, 218, 293-295, 298-299

Selection of multi-test analytic systems  71
semi-annual assessment of accuracy  49
sensitivity  , 180
serum  120
short-term imprecision  123
Six Sigma  7, 97, 216, 252

approaches for measuring process perfor-
mance  253

A terribly short introduction  252
core principle  253
example Sigma-metric calculation  257
General Guidance for calculation  257
Inpect Outcomes  253
Metric 296, 254, 258
Power  258
quality assessment of analytic process-

es  255
quality assessment of healthcare process-

es  259
Scale 252
Sigma-metric calculation  256
typical business performance  255

Six Sigma QC Design and Control  252
slope  33, 95, 99, 139, 194, 218, 303
smeas  140
specimens  17, 35, 68, 70, 78, 82, 120, 

 170, 192-193, 215-216, 220
spiked sample  216
spiking  163
spinal	fluid	 	 120
standard deviation  33, 35, 93, 95, 121, 

 123, 139, 140, 193, 217, 290-
293, 300, 303

 about the regression line  303
	 definition	 	 290-291
 for the intercept (sa)  304
 for the slope (sb)  304
 of residuals  95, 303
	 of	the	differences	 	 97,	297,	299
 of the points about that line  95
standard error  303
 of a mean  290, 293, 298
standard laboratory process  16
standard method validation process  15

standard of quality  15
standard operating procedures  67
standard operating processes  17
standard uncertainty  38
State of the Art performance  22
statistically	significant	 	 141,	 295,	 298,	 300
statistical QC  6, 8
statistical sample  290
statistic,	definition	 	 290
statistics  6, 32, 33, 34, 90-91, 195, 218, 

290,  304
Stockholm Consensus  19-20
Subpart K, Quality Systems for Nonwaived 

Testing  44
Surrogate samples  106, 165
systematic	difference	 	 36,	 160
systematic shift  36
sy/x  95, 139, 303

T
Total Error (TEa)  140-141, 202-203, 217
 see also Allowable Total Error
Technical validation  9
test interpretation  33
test performance  37
test results  15-16, 21,  33-34, 191
tests	of	significance	 	 295
Theranos  8-9
Tonks  18
total biologic goals  22
total testing process  8, 42-43
traceability  38
Translating performance claims into Sigma 

metrics  252
true mean  290, 294
trueness  38
 see also systematic error
trueness	verification	worksheet	 	 222
true standard deviation  290
t-table  297, 299
t-test  139, 147, 151, 218,  295, 296, 298
turnaround time  15, 17, 68, 70
t-value  293, 297, 298, 299
t-value, critical  298
t-value, observed  298
t-values  299
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U
Uncertainty of measurement  38
 see also measurement uncertainty
unmodified	non-waived	methods	 	 81
upper	verification	limit	(UVL)	 	 126,		153

V
validation and test complexity  50
validation plan  219
validation process  67
validation studies  216
validation study  76
variance  300
variation  119, 122
verification	 	 47–64,	110,		 120–129,	 125
verification	interval	 	 153
verification	of	accuracy	 	 152–160
verification	of	performance	specifications	 	 45
verification	Plan	 	 82
Verifying Accurate Leading-edge IVCT Devel-

opment Act (VALID)  59
verify attainment of intended quality  39

W
waived tests  46
weighted Deming  144
weighted least squares  144
when	verification	or	validation	is	done	by	

someone else  224
whole blood  120, 174
within-laboratory imprecision  118-119
within-run imprecision  80, 82
within-subject biologic variation  22
working range  82, 103
world class quality  252
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