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Preface, James O. Westgard

Twenty years ago, we published a book on “Basic Planning for Quality” [1] 
that used Charts of Operating Specifications to selected appropriate control 
rules and numbers of control measurements based on the quality required 
for the test and the performance (precision, bias) observed for the methods 
in the laboratory.  Since then, a major advance by Dr. Curtis Parvin’s de-
velopment of a patient risk model [2] has expanded the ability to design QC 
to provide an objective selection of the frequency of SQC, modeled around  
the number of patient samples between QC events.  This model is especially 
important for optimizing SQC strategies for the high volume continuous 
production analyzers that are the workhorses in today’s highly automated 
medical laboratories.

This book focuses on improving SQC practices by better design and 
planning of risk-based SQC strategies.  As you should recall, Deming’s PDCA 
cycle (Plan, Do, Check, Act) is the fundamental underpinning of today’s 
Quality Management Systems (QMS).   In the Deming cycle, the Plan step 
is perhaps the basic function most often overlooked (or under-developed) in 
medical laboratories.  Laboratory scientists tend to be “Do” people who want 
to get on with doing the work, rather than sitting around thinking about 
how to do it.  Yet we know it is important to have well defined processes 
and practices for doing the work if we are to provide consistent high-quality 
testing for our patients.    

One area where current processes and practices have questionable 
quality is Statistical QC itself [3].  Many laboratories have used the “trial 
and error” approach to establish their control rules, numbers of control 
measurements, and frequency of QC events.  We think laboratories can 
and should do better by careful design and planning of SQC procedures.  
Guidance is provided by the CLSI C24-Ed4 document [4] and its “road map” 
for planning risk-based SQC strategies.  The difficulty with this guidance is 
the mathematical model and related calculations, hence the need for simple 
and practical SQC planning tools to implement the risk-based model.

Improving SQC practices is our objective with this book.  We approach 
this issue as part of the broader laboratory QMS, recommending adoption 
of Six Sigma principles and tools, a focus on a Total QC Plan (rather than 
the Individualized QC Plan recommended for CLIA compliance), adopting 
the C24-ED4 road map, and implementing the planning process with Sigma 
SQC planning tools. 



In this context, we begin by describing the basic philosophy of Demings’ 
PDCA cycle and then provide a Six Sigma QMS framework for analytical 
quality management, followed by a detailed SQC planning process that 
makes use of simple graphical tools and internet and spreadsheet calcula-
tors.  We discuss how to design/plan SQC for different modes of operation, 
such as batch, critical control point, and bracketed operation of continuous 
production processes. We describe a variety of applications based on data 
in the clinical chemistry literature to demonstrate the planning process and 
planning tools, but also to address some current SQC problems such as the 
use of  a Repeat:2s sampling strategy, recommendations for patient based 
real-time QC procedures (PBRTQC), application of clinical control limits, 
and the use of moving average statistics with stable control materials.  

We conclude with a summary of important conclusions, recommen-
dations on how to implement QC planning in your laboratory, and some 
detailed directions and worksheets to guide and support your applications.

James O. Westgard 
Madison Wisconsin 
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Preface, Hassan Bayat

The ongoing improvements in science and technology provide more 
options to treat healthcare issues, including Quality Management.  This 
book is to provide the readers with new achievements and approaches to 
Statistical Quality Control in laboratory medicine.  Adding new techniques 
and tools to our toolbox, while honing the old ones, leads to a more empow-
ered Quality Management.  

As a personal note, over the past 15 years I have learned a lot about 
QC/QA from Professor Westgard and Sten Westgard.  And now it’s my great 
pleasure and pride to collaborate with the Westgards in this book.

Hassan Bayat 
Doctor of Clinical Laboratory Science 

Sina Clinical Laboratory, Qaem Shahr, Iran 

Preface, Sten Westgard

From the vantage point of mid-2022, it is hard to view progress as 
inevitable, that things always get better, that the “arc of the universe” 
proceeds toward justice. Indeed, sometimes it feels like there are setbacks.

For laboratories, however, there is objective evidence that things, in 
fact, have gotten worse. In global surveys on QC Practices conducted in 2017 
and 2021, worrying trends were detected:

• The % of labs using manufacturer ranges increased from 43% to 57%.

• The use of 1:2s control rule increased from 55% to 59%.

• The use of manufacturer controls increased from 64% to 67%, while the 
use of third party controls have declined.

• Running control once a day increased from 49% to 54% of labs.

• The number of labs that never release patient results when there is a 
control failure declined from 54% to 48%.

• 30% of laboratories release results after control flags on a regular (if 
rare) basis.

These are not advances, they look like regression into the past. 



Sad, to see a resurgence of backward practices, when there are more 
tools and opportunities than ever to make advances in QC practices. Indeed, 
the book describes in detail a revolutionary new approach, through the 
Risk-based MaxE(nuf) model, empowered by Sigma metrics, and enabled 
by Westgard Sigma Rules and the Sigma QC Frequency Nomogram, that 
offers a never-before chance for laboratories to design every element of their 
QC: the right rules, the right number of controls, and the right frequency of 
running QC. It simply has never been possible to answer all these questions 
before now.

Confounding this opportunity to leap forward are a number of digres-
sions and distractions. The momentum behind measurement uncertainty 
continues to metastasize – threatening to completely up-end the current 
practice of quality control. We will discuss what is being proposed by the 
latest calculations and intended control practices for measurement uncer-
tainty and uncertainty controls.

PBRTQC, the latest wave of enthusiasm for moving averages and other 
patient-based approaches, has been touted as a replacement for traditional 
quality control. While there are new capabilities to implement these tech-
niques, as we will discuss, complexities remain and the best approach is to 
implement PBRTQC selectively, almost sparingly.    

Navigating this landscape has been our passion for over 50 years, 
through this book we hope to provide you the tools to continue moving into 
a future that has better quality, more efficient operation, and reduced risk.  

For more than 25 years, Westgard QC has been publishing books on 
quality, becoming an essential part of many laboratory shelves. It is the 
honor of a lifetime to be trusted colleague to so many, and we do not take 
our responsibility lightly. Here we impart the latest wisdom, and hope you 
are well equipped for the next part of your quality journey. 
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1: Managing Quality 
James O. Westgard, PhD

Quality management is often described as a journey without end. In 
less charitable terms, it could be described as a death march. There’s 
a little truth in both of those perspectives. Quality is never “done” 
because your success today doesn’t guarantee that tomorrow will be 
successful. It takes continuous effort, week after week, month after 
month, year after year. You have to succeed every day. Ultimately 
you will need to train the next generation to continue this pursuit. 

I know something about that. I have spent more than 50 years 
of my career devoted to Quality. I didn’t “solve” the quality challenges 
and walk away to retirement and celebration. Each victory lead to 
another challenge. For 40 years, I also trained the next generation 
of laboratory scientists, so they can master these challenges, too. It 
is their journey along the path of Quality that matters next. 

 In this sense, Quality has a philosophical dimension. But it is 
equally important to have practical guidance. We might talk about 
this journey in abstract ways, but we still need a road map and an 
itinerary to identify the next stop. 

 Our journey starts with the basic philosophy of Deming: the Plan-
Do-Check-Act cycle, or PDCA. To this, we add an error framework 
which can be applied in medical laboratories. We encapsulate that in 
a Six Sigma Quality Management System for medical laboratories.  

Deming’s Plan-Do-Check-Act Cycle
Fundamental to Deming’s approach to quality management is the 
scientific method, which is embodied in the Plan-Do-Check-Act cycle, 
commonly referred to as PDCA.  As scientists, we learned the process 
of planning an experiment, performing the experiment, checking 
the experimental data, and acting on that data. In Total Quality 
Management, this PDCA cycle is applied to planning, implementing, 
monitoring, and improving production processes.    

• PLAN refers to the initial phase where management plans 
what needs to be done and how to do it.
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2.  Reviewing Current SQC Practice 
Guidelines

The state of QC practice in US laboratories is not good!  According to 
a recent survey of 21 large academic laboratories [1], the predominant 
practice is to use 2 SD control limits and analyze 2 controls once 
a shift or once a day.  That practice represents the minimum 
requirement for compliance with the CLIA rule [2] “at least once 
each day patient specimens are assayed or examined, [laboratories 
should for] each quantitative procedure include two control materials 
of different concentrations…”    By comparison, the global standard 
for accreditation, ISO 15189 [3], requires laboratories to “design 
statistical quality control procedures that verify the attainment of 
the intended quality of results.”  The ISO requirement focuses on 
ensuring quality needed for patient care, whereas CLIA focuses on a 
minimum frequency of running controls.  For regulatory compliance, 
such a minimum often becomes the maximum standard of practice. 

The survey revealed that the frequency of QC varied widely 
from 1 to 12 QC events a day for chemistry analyzers, with the 
most common frequency being 3 times per day.  For immunoassay 
analyzers, frequency ranged from 1 to 4 events per day, with 2 or 
3 being most common.  In addition, the survey found that the most 
common criterion for judging whether the analytical process is 
in-control or out-of-control was the 2SD rule, i.e., Target Value ± 
2SD.  This control rule (1:2s) was used in 95% of these laboratories 
and common practice was to repeat the control if outside of 2 SD, 
accept the run if the repeat control was within 2 SD limits, and 
reject the run if the repeat control was outside 2 SD control limits. 

Everyone knows that 2 SD control limits cause a problem with 
false rejections (remember 1 out of 20 outside the limits with N=1 
and 1 out of 10 when N=2), but US laboratories have apparently 
overcome this limitation, possibly by continuously repeating the 
controls until they are “in”, or more likely selecting SDs that are 
inflated for multiple instruments, multiple laboratories, peer groups, 
or by using manufacturers’ labeled bottle values and assigned val-
ues that are expected to encompass the results from a large group 
of laboratories. In addition, controls are typically analyzed upfront 
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3.  Developing a Total QC Plan
Our purpose in this book is to describe a QC planning methodology 
that is practical for medical laboratories today.  However, we first 
focus on a Total QC Plan (TQCP) to provide an alternative to the 
Individualized QC Plan (IQCP), the newest option for compliance 
CLIA regulations.  

We recommend development of a Total QC Plan because it keeps 
you in compliance with CLIA’s minimum standards (2 controls per 
day for most tests), but at the same time it accommodates additional 
control mechanisms for specific failure-modes throughout the Total 
Testing Process. This approach  does not require a formal Failure 
Mode and Error Assessment (FMEA).  Instead, it fulfills the goal of 
risk management by developing a risk-based Statistical QC (SQC) 
strategy, which is easier to execute than formal FMEA.  

The advantages of a risk-based SQC strategy are (a) it is a 
reproducible outcome of quantitative SQC planning process and (b) 
provides objective specifications for control rules, numbers of control 
measurements, and the frequency of QC events.  In contrast, an 
IQCP is a subjective process that leads to an arbitrary set of control 
mechanisms as well as an arbitrary SQC procedure with arbitrary 
control rules, numbers of control measurements, and frequency of 
QC events. 

This chapter will focus even more narrowly on the Total QC 
Plan and risk-based SQC Strategy.  

Approach for Developing Risk-Based QC Plans
Figure 3-1 outlines the steps for developing QC plans, either a Total QC 
Plan that includes a risk-based SQC procedure or an Individualized 
QC Plan based on a risk assessment.  As mentioned above, we focus 
on the Total QC Plan in the methodology presented here.  
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Figure 3-1.  Flowchart showing the steps for developing and 
implementing a QC Plan. 
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5.  Planning SQC Strategies for 
Bracketed Operation

Our focus here is on risk-based SQC strategies for the bracketed 
operation of continuous production processes, i.e., the high volume 
testing processes in use in most medical laboratories.  Bracketed 
operation involves two QC events that are separated by a group of 
patient samples. Patients’ results are not reported unless both the QC 
events at the beginning and end of the group of patient samples pass 
QC evaluation.  The number of patient samples between consecutive 
QC events defines the frequency of QC, a critical parameter for 
continuous production with periodic release of patient test results.    

The cost-effectiveness of bracketed operation of continuous 
production processes may be improved by implementation of multi-
stage SQC procedures that involve two or more different designs, 
switching from one to another when appropriate.  For example, a 
multi-stage control procedure could have a Startup design that is 
used for initial testing, a Monitor design that is used for routine 
operation following startup, and even a Retrospective design that is 
used to review control data over a period longer than a single run.  

The design of multi-stage Bracket SQC Strategies can be sup-
ported by use of a Sigma SQC Run Size Nomogram (also referred 
to as Sigma Run Size Nomogram), coupled with a Power Function 
Graph to ensure that the initial QC event provides the high error 
detection required for a Critical Control Point Startup design.  The 
Monitor design may be based on the desired reporting interval and 
may consider single rules with only 1 control measurement.  Such 
candidate SQC procedures have been included in both the Run Size 
Nomogram and Power Function Graph in the materials provided 
here.  A worksheet is also included to guide and document the process.  

These graphical tools have been demonstrated earlier in an 
article in Clinical Chemistry that focused specifically on “Planning 
risk-based SQC schedules for bracketed operation of continuous 
production processes” [1].  The discussion in that paper is a valuable 
addition to the material presented here.  
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6. Optimizing QC Frequency for Patient 
Risk

We focused on graphical tools in the earlier chapters, but now want 
to describe some simple calculators available as online tools at the 
Westgard Website and implementable with spreadsheets.  Although 
the graphical tools are simple to use, they are manual and therefore 
laborious when considering multiple levels of controls and multi-test 
analytical systems. To better support more complicated planning 
activities, we have converted the Sigma Run Size Nomogram into a 
calculator that also allows the patient risk factor to be a variable for 
planning SQC strategies.  This is particularly useful for applications 
where there are differences in performance at different levels of 
controls and differences in performance for individual tests in a 
multi-test analyzer, which is the ultimate challenge in designing 
risk-based SQC strategies.  

At some point, it became apparent that the Sigma Run Size 
Nomogram should be converted to a calculator.  The relationships 
between Sigma and the log-base 10 (log10) of run size is essentially 
linear in the Sigma range from 3 to 6, which is the relevant range 
of Sigma quality where the design of SQC strategies is important.  
At 6-Sigma, world class quality is achieved, and QC is easy; below 
3.5-Sigma, a laboratory can’t do enough QC to ensure the desired 
quality is achieved; below 3-Sigma, industrial guidance says the 
process is inadequate for routine production.  In between, it is 
important to implement appropriate SQC strategies to ensure the 
quality needed for intended medical use.  

One advantage of these calculators is that patient risk itself can 
be a parameter for optimizing process performance [1,2].  There are 
situations where performance at one level of control is more critical 
than at another; cases where one test is more critical for patient care 
than another in a multitest analytical system.  Adjusting the patient 
risk factor may allow implementation of a simpler SQC strategy.  
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7.  Preparing Simple Excel QC 
Frequency Calculators

It is important that you have practical tools for your own work.  
The Sigma Run Size Nomogram is practical [1], but we know many 
laboratory analysts prefer an automated tool to a manual one.  In this 
case, a simple QC Frequency Calculator can be prepared to calculate 
appropriate run sizes for different SQC procedures [2]. Given the 
ready availability of Google Sheets and Microsoft Excel, labs can use 
the directions here to set up their own run size calculators  

The details are shown in Figure 7-1A and B on the following 
pages.  This view of the spreadsheet shows the formulas that are 
needed in the various cells.  Rows 4-12 are for the information that 
must be entered by the user.   Most critical are the rows for the 
quality requirement, method inaccuracy, and method imprecision.  
These must all be entered in the same units, either concentration 
units or percentage related to the critical decision level in row 9.  
We most often work in % units, but concentration units are fine. 
What matters is that all three parameters are in the same format. 

From this information, Sigma will be calculated as (%TEa 
- |%Bias|)/%CV or (TEa-|Bias|)/SD in row 13, which is labeled 
“Calculated Sigma-metric” to distinguish it from the “Patient Risk 
Sigma” in row 14.  If the calculated Sigma is greater than 6, it is 
replaced with value of 6 as the maximum Sigma for use in the cal-
culations. That’s the outcome of the equation =+IF(G13>6,6,G13).  
If G13 is greater than 6, then a value of 6 will be entered. If not 
the actual calculated value in G13 will be used for the Patient Risk 
Sigma.  Setting a maximum value of 6 for Sigma and a maximum 
value of 1,000 for run size makes the calculator behave the same as 
the Sigma Run Size Nomogram, i.e., it limits the calculations to a 
useful range and eliminates extrapolations that would go far beyond 
the range of the nomogram (and the reality of the lab).  
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Figure 7-1A.  Left side of the worksheet shows the regression coefficients for 
calculating log base 10 (log10) of run size.  Middle section shows the entry 
parameters at the top, calculated parameters in the middle, and candidate SQC 
procedures for which run size will be calculated . Equations for calculating 
Sigma (G13) and Patient Risk Sigma (G14) are shown at the top, followed by 
the parameters for setting Patient Risk Factor of 1 (G15) and Maximum run 
size of 1000 (G16), and finally the equations for calculating run sizes (G19 to 
G28).  
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8. Considering Sigma for Multiple 
Control Levels

If you haven’t already figures it out, the Sigma quality of a test is 
a predictor of risk and the key parameter for planning risk-based 
SQC strategies.  One issue that must be considered is what is the 
best estimate of Sigma when 2 or 3 levels of controls are analyzed.  
Many labs run two levels of controls for chemistry tests.  For other 
tests,  e.g., immunoassays, hematology, labs often run three levels.  

In an earlier chapter, we illustrated how the online QC Fre-
quency Calculator can accommodate up to 4 tests or up to 4 levels 
of controls.  That allows data from multiple levels of controls to be 
used to calculate Sigma and compare the run sizes appropriate at 
different concentrations and different decision levels.  

To provide an alternative to use an average Sigma that 
represents performance over a wide analytical range, 2 other QC 
calculators are available: 

•  http://tools.westgard.com/frequency_calculator2.shtml  and 

• http://tools.westgard.com/frequency_calculator3.shtml. 

These are similar in format to the first QC Frequency calculator 
but include an additional column for the “average” Patient Risk Sigma. 
This should facilitate selection/design of SQC strategies based on the 
Sigma performance observed over a concentration range, rather than 
the Sigma performance at a single concentration. These calculators 
are intended to support the application of the CLSI C24-Ed4 “road 
map” [1] for developing risk-based SQC strategies, with calculation 
of QC Frequency in terms of run size, in accordance with Parvin’s 
patient risk model [2].

These calculators can be used to compare the performance for 
different levels of controls, compare the SQC strategies appropri-
ate at different levels of controls, and compare the SQC strategies 
appropriate over the range of concentrations represented by the 
controls. We know that it is likely to observe different Sigmas at 
different concentrations. The issue is how to handle those differences 
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10.  Defining Quality Required for 
Intended Use

Let us admit that what most laboratories actually practice is Arbitrary 
Control. It doesn’t sound as nice as Quality Control, but if you run 
QC without defining the goal for quality, you have no idea if you 
are achieving anything.

Perhaps an analogy will help. You can’t tell if you have made 
a basket (in basketball) if there is no rim, no net, and no backboard. 
You’re just throwing a ball away. Simply put: without defining a 
goal, you can’t tell if you’ve been successful or if you have failed.
When you have defined a goal, you can validate performance in the 
laboratory, you can determine if the method will achieve the desired 
quality, and later you can establish appropriate SQC procedures for 
monitoring test performance. 

In the absence of a stated requirement for quality, the manage-
ment of  that process can only achieve an arbitrary level of quality 
that may or may not meet customer needs.  Think of the common 
and widespread use of 2 SD control limits with Ns of 2 or 3 for most 
of all tests in a laboratory [1].  While many laboratory professionals 
agree that one size QC does not fit all tests, in practice many apply 
2 SD limits across the board for their tests.   

The remedy is to implement an objective process for designing 
SQC procedures based on the quality required for intended use, the 
imprecision and bias observed in the laboratory, and the rejection 
characteristics inherent in the control rules and numbers of control 
measurements applied.   

Now we return to the issue of what quality is required for the 
intended use of a test.  We often take up this issue at the beginning 
of the story, but in the context of the discussion here it fits nicely 
following the planning process and the “options” available if run 
size does not satisfy the desired reporting interval, as discussed in 
the previous chapter and shown in Figure 10-1.  
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Figure 10-1.  Options 1 to 5 for improving QC when run size initially 
does NOT satisfy the desired reporting interval.

Of course, the first option is to improve performance, if possible, 
by reducing the bias and/or the SD.  The second option is to reassess 
the quality requirement that was applied.  We mentioned earlier 
that the EFLM is now advising labs using biologic goals is to switch 
from the “desirable” goal to the “minimum” goal.  Changing the goal 
sounds simple, but it assumes considerable knowledge about ana-
lytical performance specifications, so we will undertake a thorough 
discussion here to review some of the history and current practices. 
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11.  Assessing Potential Usefulness of 
PBRTQC

One of the options for improving QC is to implement procedures that 
make use of patient data, rather than depending on a few control 
measurements using traditional SQC procedures.  This approach is 
becoming popular due to the recommendations and articles coming 
from an IFCC working group on Patient Based Real Time Quality 
Control (PBRTQC).  Clinical Chemistry highlighted the potential 
usefulness [1].  Presented in an informal Question and Answer format, 
the IFCC workgroup optimistically promoted PBRTQC applications:

PBRTQC will become the mainstay of QC in laboratories once 
the profession sees the advantages of this form of process control, 
and manufacturers and middleware vendors provide the onboard 
capability.  

The power of these techniques is that they offer exquisite customization 
to provide very sensitive detection of a change in bias.

Hand in hand with the implementation of PBRTQC is a need to 
change the mindset from human decision making to AI approaches 
to QC.

There is a need for large analytical systems to not only use the 
Hospital Information System to identify patient subgroups, but 
also for the Laboratory Information System to identify a significant 
drift, interrogate manufacturers databases regarding calibrator 
and reagent lot quality, and to initiate recalibration. 

PBRTQC is a major step to integrating the laboratory into the 
hospital information system, and to a bigger dataset with the 
ultimate goal of better patient outcomes.

Dreams of the Future vs Present Reality
 While it is exciting to speculate about the future, it’s also important 
to assess what is practical in the present. 
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12.  Upgrading Multirules with Moving 
Averages

The original multirule paper was never intended to be a “one size 
fits all” recommendation for IQC.  In fact, it recommended different 
control rules for different numbers of control measurements [1, Table 
4].  Certain rules were recommended to inspect within-run results 
and others were recommended to be used across (consecutive) runs.   
For example: 

• for 2 control measurements, the 1:3s and 2:2s were recommended 
for use within-run and the 4:1s and 10:x across-runs;

• for 3 control measurements, 1:3s, 2of3:2s, and 3:1s were 
recommended for within-run and 9:x across-runs; 

• for 4 control measurements per run, 1:3s, 2:2s, R:4s, and 4:1s 
within-run and 8:x across-runs;

• for Ns greater than 4, the recommendation was to use mean 
and range rules within-run and “trend rules” across-runs.

The term “trend rules” referenced a paper by Cembrowski et 
al [2] that described the use of a Moving Average Algorithm (MAA) 
in the form of an exponentially smoothed moving average.  Thus, 
it was expected that when the number of control measurements 
increased above 4 per run, simple traditional control rules would 
be replaced by control techniques related to mean and range rules 
(and associated moving estimates).

Power curves for mean and range QC procedures with Ns of 6 
and 8 are shown in Figure 12-1, along with the power curve for an 
N=6 multirule. The mean and range procedures have been selected 
to maintain low false rejections from 0.02 to 0.00, whereas the N=6 
multirule procedure has a Pfr of 0.07.  You can most easily identify 
the multirule procedure by looking at the y-axis and identifying 
the curve with the highest intercept. The family of mean/range 
rules demonstrate their appropriateness for maintaining low false 
rejections and high error detection as Sigma quality approaches 
3.0.  Thus, the recommendations from the original multirule paper 
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anticipated the use of mean and range types of procedures for higher 
numbers of control measurements due to the higher false rejections 
for multirule procedures.

 Figure 12-1.  Power curves for mean and range rules with Ns of 6 and 8 compared 
with a multirule procedure with N of 6. 

Performance of Moving Average Algorithms
More recently, a paper by Po et al [3] recommended replacing 
Westgard multirules by moving average algorithms (MAA).  One 
of these authors has been involved with the IFCC group that is 
promoting PBRTQC procedures, thus their work with MAAs for 
patient-based QC might be expected to carry over to applications 
for stable control materials used in IQC.  The authors studied the 
performance of Westgard multirules with Ns of 2 and 4 and MAA 
with block sizes of 5, 10, and 20.  The larger block sizes for MAAs 
should provide better error detection, however, there is a subtle 
issue with the speed of response after a systematic error occurs that 
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13.  Re-designing QC Wrongly for the 
Traceability Era 

According to published recommendations from a 2019 conference 
on metrological traceability and IQC [1], the structure of Internal 
Quality Control (IQC) should be fundamentally changed.  IQC should 
be divided into two parts.  

• IQC Component I applies to control materials that are used 
to monitor analytic performance and make decisions to accept 
or reject analytical runs. 

• IQC Component II requires a commutable control that is 
analyzed once per day over a period of 6 months solely for the 
purpose of estimating measurement uncertainty (MU).

While there will be an obvious objection to doubling the amount 
of QC being run in laboratories, that’s not what we want to address 
in this chapter. Instead’ we will focus on the Component II’s recom-
mended decision-making for acceptance or rejection of analytical runs.  

The specific recommendation is to calculate the control limits 
for a control chart as Target Value ± 2*APSu, which represents a 
95% “acceptability range” for the Analytical Performance Specifi-
cation (APS) for standard Measurement Uncertainty (u, expressed 
as SD, s, or CV).  One of the fundamental principles of SQC is that 
each laboratory should characterize its own imprecision and use 
that SD in calculation of control limits.  Instead, the authors argue:

“What is lacking is the link with the new scientific background [for 
metrological traceability] … To obtain this, the acceptability range 
for QC component I should correspond to APS for MU derived 
according to the appropriate Milan model and it should be set 
based on unbiased target value of the material obtained by the 
manufacturer as the mean of replicate measurement on the same 
measuring system optimally calibrated to the selected reference.” 
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Fixed control limits still have statistical performance 
characteristics

The direct use of an “acceptability range” for control limits has the 
same problems as earlier practices using “clinical limits” and “fixed 
limits”. We discussed the fallacy of using such limits when the CLIA 
rules were being finalized in the mid-1990s [2].   The mechanics of 
applying today’s “acceptability limits” are the same. The idea is , 
just draw the limits that represent the performance specification 
directly on the control charts, in this case ± 2*APSu.  This advice 
does not consider measurement uncertainty in the interpretation 
of individual control measurements.   If the purpose of MU is to aid 
the interpretation of test results, that should apply to control results 
as well as patient results.  

Regardless of the rationale, those lines for fixed control limits 
still have the properties of statistical control limits because of the 
measurement uncertainty associated with each individual control 
result.   The particular statistical control rule can be identified by 
dividing the clinical control limit by the SD observed for the partic-
ular laboratory method.  Then the power curve for that control rule 
can be determined to characterize the probabilities for rejection for 
various error conditions.  Given that individual laboratory methods 
in different laboratories will have different amounts of imprecision, 
the performance of such fixed control limits will differ from one lab-
oratory to another.  Measurement uncertainty itself is the reason 
that fixed clinical control limits won’t provide appropriate QC. 

For example, APSu for HbA1c is 3.0%, according to recommen-
dations published by these same authors [3], so the acceptability 
range of ± 2*APSu would be TV ± 6.0%.  If Method A has stable im-
precision of 1.0% and bias of 0.0%, the method demonstrates 6-Sigma 
performance [(6.0%-0.0%)/1.0%] and the MU acceptability range 
provides a 6s control range (6.0%/1.0%).  If out-of-control is defined 
as 1 control result exceeding a control limit, then for Method A the 
control rule is 1:6s N=1, where N represents the total number of 
control measurements in a QC event.  If another method has stable 
imprecision of 1.5% and bias of 0.0%, it demonstrates 4-Sigma per-
formance and will require more intensive QC.  A method with a CV 
of 2.0% and bias of 0.0% would provide 3-Sigma performance, which 
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14.  Determining MU from QC Data
As discussed in the previous chapter, metrologists have proposed 
that measurement uncertainty be estimated from QC data.  While 
they would prefer a commutable control material be used, current 
practices for estimating MU do in fact rely on QC data.  However, 
there are issues about the proper way to estimate MU from that 
data.  Having already opened the metrology can of worms, it seems 
necessary to address the issue of how to calculate MU from QC data. 

According to ISO 15189 [1], section 5.5.1.4, “the laboratory shall 
determine measurement uncertainty for each measurement procedure 
in the examination phases used to report measured quantity values 
on patients’ samples.”  Although this requirement has been in place 
for years, there are continuing arguments about how to calculate 
measurement uncertainty.  A new ISO document 20914:2019 [2] 
specifically addresses the issue, but there still is vigorous debate in 
the literature about how to properly calculate measurement uncer-
tainty [3-4], particularly how to incorporate the effects of uncorrected 
clinically significant bias. 

Originally, the debate was about proper application of the 
bottom-up methodology recommended by GUM – Guide to the 
expression of uncertainty in measurement [5].  The bottom-up ap-
proach depended on identifying individual components of variation, 
estimating their size, then summing the variances and extracting 
the overall standard deviation, or standard uncertainty.  After many 
attempts at implementation, it was concluded that the bottom-up ap-
proach was too complicated for medical laboratories.  The alternative 
was to employ a top-down methodology that made use of available 
data on measurement precision, specifically, internal quality control 
data obtained over a period of a few months, commonly referred to 
as intermediate precision data.  By 2012 when the CLSI published 
guidance C51-A on “Expression of Measurement Uncertainty in Lab-
oratory Medicine”, both bottom-up and top-down methodologies were 
included [6].  Given the more complicated mathematical calculations 
behind the bottom-up model, a large portion of that document is 
devoted to explaining that model.
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15.  Evaluating Repeat:2s QC Practices

If at first you don’t succeed, try, try again

– Thomas H. Palmer

Those who do not remember the past are condemned to repeat it.

– George Santayana

History repeats itself, first as tragedy, second as farce.

– Karl Marx

There are many aphorisms that can provide us wisdom and guidance 
on how to work in the laboratory. But while the proverbs listed above 
are catchy, they are not QC rules.

In Chapter 2, we observed that common QC practices don’t 
always conform to good laboratory practices.  The issue of using 
Repeat:2s control rules provides a good example of the problem.  As 
surveys of QC practices show[1], the most common QC practices is 
using 2SD control limits.  Everyone knows about the false rejection 
problem with 2SD limits, so how have laboratories rationalized the 
use of this practice?  The existence of a scientific paper that recom-
mends a repeat:2s sampling strategy is the answer [2].  It may be 
questionable whether laboratories actually comply with the protocols 
for using Repeat:2s rules, but they still rationalize their applications 
based on the theory of repeat QC sampling.  

We first became aware of the Repeat:2s sampling strategy 
from a poster presentation at the 2011 National AACC Meeting.  
In response, we discussed this recommendation on the Westgard 
website in October of 2011 [3].
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16.  Applying Individual vs Pooled 
Means and SDs for Multiple Analyzers

One of the biggest challenges of laboratories today is to grapple 
with the sheer scale of testing. At the dawn of the laboratory age, a 
laboratory had a single instrument for each test, and it operated in 
isolation from all other tests. One of the first major breakthroughs 
was the multitest instrument, but even then, the laboratory had a 
single chemistry instrument that might run a score of tests. 

Today’s laboratories can run dozens of instruments – reference 
laboratories exist that run hundreds of instruments – and they no 
longer operate in a vacuum. Your laboratory is probably part of a 
healthcare system, and patients will migrate from outpatient clinics 
to smaller clinical centers to large hospitals (and then back). They 
will be tested by multiple instruments located across multiple lab-
oratories. And of course there is great pressure to make sure those 
results are comparable across all instruments and all laboratories.

There is relatively little discussion in the literature of how to 
sustain such an effort. It’s clear there are a wide range of approaches. 
The most popular choice seems to be common means and common 
SDs. While this may be the easiest and most convenient choice, 
there’s no evidence that this is the appropriate solution to a scientific 
problem. And while everyone seems to agree that the discussion is 
restricted to a set of the same instruments, same lot of reagents, 
same lot of control materials, etc., the reality is that this approach 
is also being implemented across heterogeneous systems – where 
different instruments, different reagent lots, are nevertheless being 
assigned the same mean and SD. 

Selecting SQC strategies for multiple instruments is a suffi-
ciently difficult problem that the most recent CLSI C24-Ed4 guid-
ance document [1] did not address this issue, stating that “although 
significant advances in QC thinking have occurred, there are still 
important areas that could benefit from additional developments, 
such as QC strategy design and implementation for laboratories 
with multiple instruments of the same type performing the same 
measurement procedures.” The C24-Ed4 guideline deliberately 
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17. Controlling Differences between 
Reagent Lots

Reagent lots have differences. This is widely known and despite all 
the advances in engineering and technology, remains distressingly 
common. Across decades of encounters with laboratories, we have 
seen a wide array of practices for approving / validating / verifying 
new reagent lots. Some of the old habits include a simple of check of 
the QC (“Controls in? all right then…”), to a flat goal of 10% allowable 
difference between lots, to the use of the entire total allowable error 
budget as the acceptability criteria.

Let’s be honest: in many cases, these practices are wrong.

The better approach to judging lot-to-lot reagent acceptability 
is to use real patient samples and determine an analyte-specific 
criterion for allowable difference. We’ll explain in more detail. But 
first, let’s explain why the practices above are less than ideal.

1. The problem with just checking some controls is that there is always 
the issue of commutability and matrix effects. If the controls aren’t 
fully commutable (and most aren’t), the acceptability of controls does 
not guarantee that the patients won’t be affected by a difference 
in reagent lots.

2. The problem with using a single goal for lot acceptability for all 
analytes is that we all know there are individual performance 
specifications for individual analytes. Reagent lot criteria also 
need to be individualized. 

3. Finally, given an allowable error specification that needs to 
encompass all sources of random and systematic error, you can’t 
use it all up at once. You can’t blow the whole budget just on the 
bias between reagent lots.
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20.  Preparing for Practical Applications
This chapter provides materials that you can copy – or download – for 
use in your own applications. You also can used them  as a starting 
point for developing your own QC design procedures.  The materials 
include step-by-step directions for use of the various graphical tools, 
worksheets to guide the calculation of the Sigma quality of a testing 
process, forms for documenting planning applications, and a template 
for the Sigma Run Size Nomogram (likely the most useful tool).

D-1. Directions for Calculation of Sigma for a Testing Process

 WS-1. Calculation of Sigma from Manufacturer’s Claims

 WS-2. Calculation of Sigma from Method Validation Data

 WS-3. Calculation of Sigma from SQC and PT(EQA) Data

D-2. Directions for Comparing Current QC Procedures with Westgard 
Sigma Rules with Run Size.

 WS-4. Initial Assessment of Current QC Procedures

D-3. Directions for Planning Batch and CCP SQC Events using Power 
Function Graphs

 WS-5. Planning a Batch/CCP SQC Event (2 control levels)

 WS-6. Planning a Batch/CCP SQC Event (3 control levels)

D-4. Directions for Assessing Batch and CCP SQC Procedures for a 
Group of Tests using Normalized OPSpecs Charts

 WS-7. Assessing Batch/CCP SQC using NOPSpecs Chart for 2 
levels

 WS-8. Assessing Batch/CCP SQC using NOPSpecs Chart for 3 
levels

D-5. Directions for Assessing Performance of Bracketed SQC using a 
Sigma Run Size Matrix

 WS-9. Assessing Bracketed SQC using a Sigma Run Size Matrix
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21.  A Final Word
We cannot end this book without commenting on the impact of 
COVID19 on the laboratory community, and how it reflects a longer-
term struggle for the future.

In the past 2 years, there has been ample dissection of what 
went wrong in the US pandemic response, from initial CDC testing 
method failures to the vacuum of political leadership. At the same 
time, there’s been a similar media narrative praising all the hard-
won accomplishments, the heroic achievements, the sacrifices of 
our healthcare heroes.

If these last few years represent a triumph for laboratory 
testing, it is a strange victory. It’s not the win we were hoping for, 
nor is it the win we needed. 

By any measure, the response of the laboratory to the COVID19 
has been amazing. From PCR to antibody to antigen, the testing 
methods available now are ample to the need. But testing lagged so 
far behind, it was the vaccinations that truly saved the patients, not 
the laboratories. In the public mind, the laboratory was not where 
the war was won. In the thick of this crisis, laboratory professionals 
worked punishing hours, 6-7 days a week, grappling with constant 
supply shortages, allocations, and a roller coaster of regulatory rec-
ommendations. Even as vaccinations have risen, and some COVID19 
testing volumes have diminished, for many hospital labs, there is 
now a new normal – COVID19 testing on everyone, on top of the 
typical routine testing workload. So the “post”-pandemic workload 
is greater than the pre-pandemic, which was already crushing.

As the news from medical technology programs comes in, we 
have not seen larger incoming classes, expanded programs, or new 
programs being established. Apparently, the pandemic has had no 
impact at all on the number of people entering the profession. 

So, instead of a triumph, we have the same crisis that we were 
facing before: too much work, not enough staff, not enough respect or 
resources given to us. Except now it is worse than ever. Particularly 
in the US, there is a critical shortage of staff at the bench level – we 
have gone from Lean to skeletal. 
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